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Interpolation of minimal norm into the space of polynomials spanned by the
monomials 1, t 2

, ... , tn+ 1 on an interval [a, b], with 0 < a < b, is shown here to be
characterized by the equioscillation properties (Bernstein-Erdos conditions) which
characterize minimal norm interpolation into several other spaces, including in
particular the classical case of the space spanned by the consecutive monomials
1, t, ..., tn on any underlying interval. A natural conjecture is that the Bernstein and
Erdos conditions in fact characterize minim~l norm interpolation in practically any
space spanned by an extended Chebyshev system (Markov system). Thus far, this
conjecture eludes proof. It is hoped that the techniques employed here, in a
concrete case, may be of help in this more general problem. © 1991 Academic

Press, Inc.

1. INTRODUCTION

Spaces of incomplete or lacunary polynomials present an area of
interesting complexity in the investigation of optimal interpolation. It has
been conjectured [6] that optimal interpolation from C[a, b] into such
spaces is characterized by the conditions of Bernstein and Erdos, described
below, which characterize optimal interpolation into several other types of
spaces. Indeed, this has been shown true [6J for incomplete polynomials
spanned by the monomials 1, tk + 1

, ... , tk + n when the left endpoint, a, of the
interval of interpolation is O. A problem of much greater complexity arises
if, with a natural desire for generality, one allows a> 0 as well. We state
the following result here.

2. STATEMENT OF RESULT

THEOREM.

1,t2
, ... ,tn + 1

For n:? 2, let Y be the space of polynomials spanned by
Optimal interpolation with this space on an interval [a, b],
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with 0 < a < b, and with nodes to, ..., tn, satisfying a = to < ... < tn= b, is
characterized by the conditions of Bernstein and Erdos, and the nodes
to, ..., tn are uniquely determined.

Remark. The following proof also shows slightly more. It shows that
the norm of optimal interpolation with this space, for any given n, must
exceed the norm of optimal interpolation with polynomials of degree n - 1.
As discussed in [8J, this result follows directly from the nature of the proof
given below.

3. METHOD OF PROOF

We first introduce necessary notation and describe the Bernstein and
Erdos conditions mentioned above. An outline of the proof of the theorem
concludes this section.

The problem solved here is one of a class of problems with some com
mon features, and its proof may best be motivated in the general context.
We begin, therefore, with some general observations, which parallel the
development in [9J, where the methodology applied here was laid out.

We let the space Y of dimension n + 1 in C[a, bJ be spanned by a com
plete extended Tchebycheff system. Then given nodes to, ..., tn in [a, bJ
such that a = to < ... < tn=b, there exists a basis {Yo, ..., Yn} for Y such
that

(Kronecker delta).

An interpolating projection P: C[a, bJ --+ Y may then be defined for
fE C[a, bJ by

n

Pf = L fUi) Yi·
i~O

It is seen that P is bounded, and

The Lebesgue function

has the properties that

A(t) = 1 if t is a node,
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and, for i E {I, ..., n},
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A has a unique maximum T; on the subinterval [t;_1> tJ between
two consecutive nodes (provided that n > 1), at which points A is
differentiable, and A'(T,.) = O.

Clearly, IIP'I =max{A(Td, ..., A(Tn )}, and IIPII depends upon the choice of
nodes t1 , •.• , tn - 1 •

That the norm of P is minimal if

for some unique value C y, the equality holding on a uniquely determined
set of nodes, is a natural generalization of the Bernstein conjecture on
Lagrange interpolation [1]. That, furthermore, if II PII > C y, at least one of
the local maximum values of A is less than C y is an equally natural
generalization of the Erdos conjecture on Lagrange interpolation [3J,
these conditions combined are the conjecture of [6]. Our theorem states
that both of these generalized conjectures are valid and characterize
optimal interpolation for the space under consideration.

We define

iE {l, ..., n},

and denote by X; the function in Y which agrees with A on [t;_l' t;]. The
derivative of the function from Rn- 1 to Rn given by

exists and is given by a matrix

(1)

We denote by Jp the determinant of the square matrix derived by removing
the pth row, for each p E {I, ..., n}.

To establish the generalized Bernstein and Erdos conjectures of [6J as
valid characterizations of optimal interpolation into Y, it suffices to show
[4,2,5, 10] that

(i) Jp i: 0 for all possible choices of the nodes and for

pE {l, ..., n},

and

(ii) Jp alternates in sign.
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(2)

facilitates our work. Using the methods described in [9], we reduce this
matrix by column and row cancellations to an equivalent matrix

(3)

reducing (i) and (ii) to a question of whether the set of functions
{Ql, ...,Qn}\{qp}, pE{l, ...,n}, admits a non-trivial linear combination
which is zero on the points t1, ..., tn _ l' The proof is then completed by
answering this question.

Proof of the Theorem. As discussed above, it is necessary to construct
the matrix (1) of partial derivatives and to establish the determinant
properties (i) and (ii). We begin by obtaining explicit expressions for the
fundamental functions. We may write explicitly for i E {O, ..., n}

where

n

f;(t;) = L n tl,
}~O I~O

I#}

(4)

and where f;(t) is obtained by replacing t; with t in the above formula. We
note thatfi(t;)=Jj(t}) for i,jE {O, ..., n}.

The functions fl(t) are linear, symmetric, and positive for positive
to, ..., tn' and t. For j -# l, we write fl(t; t}) to denote that t} is the inde
pendent variable, the others being held constant. The important identity

(5)

implies that fl (t; t}) may be viewed as a linear function with a negative root
which would move to the left as t increases on the interval (0, (fJ), as may
be seen from the following computation, which cuts through the notational
complexity by relabelling the points. We assume without loss of generality
that to, ..., tn- 1 are positive and that tn is such that

n n

L n tm=O.
1=0 m#1

m=O
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and, after application of the quotient rule, the numerator of otn/otj , for any
j E {O, ..., n - 1}, is equal to

11-1

- L t~,
m~O

m#j

which is negative.
Using the equivalence (2) to rewrite the matrix (1), we may carry out the

matrix manipulations described in [9], reducing the matrix (1) in this
context to a matrix of form (3), in which we may define the entries qJtJ,
for i E {1, ... , n}, j E {1, ..., n - I} by

in which by (5) we may regard q!, ..., qn as polynomials evaluated at suc
cessive points II> ... , tn~l across the rows of the matrix. Only the represen
tations of these functions changes from column to column.

It is now possible to ascertain conditions (i) and (ii) by looking at the
locations of the roots of the polynomials q!, ..., q,,, in a manner similar to
that used in [7]. We note first of all that each of the polynomials X~, ..., X~
has a root at zero, which may be cancelled, as indicated in (6), without
affecting the nonsingularity properties on the nodes. All other roots of these
polynomials are real, and on the interval [T1 , Tn] their roots strictly inter
lace in a cyclic pattern. Moreover, the polynomials X~ and X~ each have
n - 1 roots on this interval. The other polynomials X;, ..., X~ each have
exactly n - 2 roots on the interval, and perhaps another root in some loca
tion outside of the interval. Under certain circumstances which will be
described below, the location of this root may cause a problem. A method
for dealing with this problem will be introduced there. We adopt, for
i E {1, ..., n}, the more compact notation

emphasizing again that Qi(t) is a polynomial.
We move now to consideration of the factors f/(Tk ), for IE {1, ..., n - 1},

k E {1, ..., n}. For convenience, and with no loss of generality, we will
choose to use the particular representation of the functions (6) which
occurs in the first column.
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For each 1E {2, ..., n - 1}, the functions

k E {1, ..., n}

in the variable t I have roots S I> I, ..., Sn' 1such that

(7)

and the factor
n

IT ft(Tk ; td
k=1
k#i

which appears in the i, 1st entry has roots on the set

We now adopt as a simplification of our problem a standard representation
of the polynomials ql> ..., qn by writing

n-I n

qi(t) = Ci IT =1 (t - Sk, t) Qi(t)
t~2 k=1

k#i

(8)

in which CI , ••. , Cn are whatever non-zero constants are appropriate.
We now begin the demonstration that (i) is true by successive reduction

of the degree of the polynomials. The method will involve adding suitable
polynomials to qj, ..., qn, causing the roots Sk,t to coalesce in such a way
that the corresponding factors can be cancelled from the columns, resulting
at last in the reduction to an equivalent matrix the numerical value
of whose entries is unchanged, but whose entries are now represented by
polynomials of degree not exceeding n - 1, evaluated at the original points
of evaluation. Matrices of this form are known to have the nonsingularity
properties (i) and (ii). The demonstration below is quite similar to that
used in [7]. It will be necessary to discuss two cases in order to complete
the argument.

We will show, for a fixed but arbitrary index 1E {2, ..., n}, that the roots
SI,t' ... , Sn,t may be moved successively to the location of Sn,t and cancelled.
To facilitate the presentation, we rewrite (8) for i E {1, ..., n} as

(9)

in which R i is the polynomial defined by
n

Ri(t) = IT (t - Sk,t) Qi(t)
k=1
k#i
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and by L; we denote the polynomial whose roots are the remainder of the
roots of qi' It is now necessary to distinguish two cases. We recall that the
polynomials Q2' ..., Qn-l may each possess a single root which lies outside
of the interval [Tu Tn]. We assume as the first case that none of these
roots lie on the interval [sn,t' Td. If any of these roots are so situated, we
must move to the second case, in which we describe a method by which
they can be moved away from that interval.

We observe that for j E {1, ..., n -1},

whenever P; is a polynomial which has roots at the points t b ... , t n _ 1.

Thus, for i E {1, ..., n} we choose Pi to be the polynomial of minimal degree
which has roots at t l , ..., tn_ l and at each point in the set {Sl,!' ... , Sn-2,t}\
{Si,!}' and we assign to Pi the value

We note that Pi is identically zero if Ri(sn,t) = O. Otherwise, the result of
inserting this particular Pi in (10) is a polynomial whose degree does not
exceed that of the original q; for i = 1 or i = n. For i E {2, ..., n - I}, the
degree of the new polynomial may indeed exceed the degree of the old
polynomial by one, but under no circumstances does it exceed the degree
of ql or qn' Moreover, the sign of Pi agrees with the sign of Ri on the set
{Tu ..., Tn} \ {TJ, implying that the sign of qi cannot change at these
points. The sign cannot change at Ti either because the number of roots of
Pi + R i would exceed its degree. Thus, the degree of the polynomials
ql' ..., qn may be decreased by cancelling the factor (tj-sn.t) from the jth
column of the matrix for j E {1, ..., n}. The argument may now be repeated
until all of the roots Sl,t. ..., sn,l have been removed from the polynomials
in the matrix, leaving a set of polynomials of degree n -1 or less which
preserve their original signs at the points Tj, ..., Tn- As stated, this condi
tion suffices to establish determinant property 0).

We now turn our consideration to the second case, in which at least one
of the polynomials Q2' ..., Qn-l possesses a root on the interval [sn,t, Td.
For each i E {l, ..., n} such that Qi has no root on this interval, we add to
Q i the polynomial

where bi is of such sign as to make the expression Pi negative at the point
T 1 and is of sufficiently small magnitude that the crucial sign properties on
the points T l , ... , Tn are not violated by Qi + Pi' which' we immediately
relabel as Qi' The effect of this small perturbation of the system of polyno-
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mials is to provide for each of them a root to the left of T I and, for
i E {2, ..., n - 1}, another to the right of Tn, and, of course, to increase the
degree of those polynomials so treated to n - 1. The constant b i should
have been chosen with more care than the others, as the new root lying to
the left of T I of the new polynomial QI should be the leftmost of all of the
roots of all of the new polynomials Ql' ..., Qn and should furthermore be
to the left of the point Sn,l' This, however, can be done; if the other coef
ficients are chosen first, we simply have a second condition which requires
an upper bound on Ibil. At this juncture, the roots of Q2' ..., Qn which lie
to the left of T I can be moved to a common location with the leftmost root
of Q1 and cancelled from the matrix by arguments essentially identical to
those used in the first case, discussed above. After this cancellation, the
second case has been reduced to the first.

This argument concludes the proof of the properties (i) and (ii), which
have been shown to imply the theorem.

4. CONCLUDING REMARK

It is hoped that this paper will serve as an opening to more general
problems of optimization of interpolation with incomplete or lacunary
polynomials.
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